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A comprehensive framework for detection and characterization of over-
lapping intrinsic symmetry over 3D shapes is proposed. To identify promi-
nent symmetric regions which overlap in space and vary in form, the pro-
posed framework is decoupled into a Correspondence Space Voting proce-
dure followed by a Transformation Space Mapping procedure. In the corre-
spondence space voting procedure, significant symmetries are first detected
by identifying surface point pairs on the input shape that exhibit local simi-
larity in terms of their intrinsic geometry while simultaneously maintaining
an intrinsic distance structure at a global level. Since different point pairs
can share a common point, the detected symmetric shape regions can po-
tentially overlap. To this end, a global intrinsic distance-based voting tech-
nique is employed to ensure the inclusion of only those point pairs that
exhibit significant symmetry. In the transformation space mapping proce-
dure, the Functional Map framework is employed to generate the final map
of symmetries between point pairs. The transformation space mapping pro-
cedure ensures the retrieval of the underlying dense correspondence map
throughout the 3D shape that follows a particular symmetry. Additionally,
the formulation of a novel cost matrix enables the inner product to succes-
fully indicate the complexity of the underlying symmetry transformation.
The proposed transformation space mapping procedure is shown to result
in the formulation of a semi-metric symmetry space where each point in
the space represents a specific symmetry transformation and the distance
between points represents the complexity between the corresponding trans-
formations. Experimental results show that the proposed framework can
successfully process complex 3D shapes that possess rich symmetries.
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1. INTRODUCTION

Symmetry is ubiquitous in nature and in artificial man-made ob-
jects. The detection and characterization of shape symmetry has
attracted much attention in recent times, especially within the com-
puter graphics community [MITRA13]. Although most of the exist-
ing literature has focused on the detection of extrinsic symmetries;
a popular approach being transformation space voting [MITRA06];
there has been steadily growing interest in detection and charac-
terization of intrinsic symmetries. Most recent efforts in intrinsic
symmetry detection have focused on detection of global symme-
tries [OVSJANIKOV08]; [LIPMAN10]. It is generally recognized
that detection of overlapping intrinsic symmetry is a more challeng-
ing problem due to the larger search spaces involved in the detec-
tion of symmetric regions (in comparison to global symmetry anal-
ysis) and the determination of symmetry revealing transforms (in
comparison to extrinsic symmetry detection). Also, overlapping in-
trinsic symmetry detection and characterization is more important
because it is a more generalized problem in nature than extrinsic
symmetry detection problem which can be considered as a special
case of overlapping intrinsic symmetry detection.

We present a formal definition of overlapping intrinsic symme-
try. An intrinsic symmetry over a shape is a subregion with associ-
ated self-homeomorphisms that preserve all pairwise intrinsic dis-
tances [MITRA13]. In this paper, we address the problem of in-
trinsic symmetry detection and characterization of shapes based on
their intrinsic symmetries. Complex shapes often exhibit multiple
symmetries that overlap spatially and vary in form as depicted in
Figure 1. Overlapping symmetry analysis enables the construction
of high-level representations that enhance the understanding of the
underlying shape and facilitate solutions to such problems as shape
correspondence, shape editing, and shape synthesis [WANG11].
However, analysis of overlapping symmetry poses additional chal-
lenges as described below.

Existing approaches to intrinsic symmetry detection, including
those based on region growing [XU09], partial matching [RA-
VIV10], and symmetry correspondence [LIPMAN10] are not able
to extract physically overlapping symmetries. Lipman et al. [LIP-
MAN10] cluster sample surface points from an input shape and
use a symmetry correspondence matrix (SCM) to identify intrinsic
symmetry properties of groups of surface points. In their approach,
each SCM entry measures how symmetric two surface points are
based on some measure of intrinsic geometric similarity between
the local neighborhoods of the points. Xu et al. [XU12] let surface
point pairs vote for their partial intrinsic symmetry and perform
intrinsic symmetry grouping using a 2-step spectral clustering pro-
cedure. However, their approach lacks the ability to retrieve the
final symmetry map which makes characterization of the specific
intrinsic symmetry a difficult problem.

Our key idea behind our approach to intrinsic symmetry detec-
tion and characterization is to approach the problem from a shape
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Fig. 1. Symmetry extraction in functional space.

correspondence perspective and generate the transformation map
which can be further used to describe the symmetry space. To this
end, we perform two stages of processing where in the first stage,
representative symmetric point pairs are identified based on their
local geometry and a global distance representation and in the sec-
ond stage the original transformation is retrieved as a map to facil-
itate further characterization of the underlying symmetry. The de-
tected intrinsic symmetries are quite general, as shown in Figure 1.

1.1 Symmetric point pairs

A fundamental question in symmetry detection is quantifying the
extent of symmetry between a pair of points. The primary chal-
lenge in identifying potentially symmetric point pairs is to come
up with conditions strong enough to adequately constrain the sym-
metry search space such that the symmetry detection procedure is
computationally tractable. We rely on a local criterion, such as geo-
metric similarity, and a global criterion, such as the distance-based
symmetry support received by a point pair {a, b}, to detect and
quantify the extent of symmetry between points a and b. We refer
to a point pair {a, b} which satisfies the local geometric similar-
ity criterion as a good voter. The point pairs within the popula-
tion of good voters, that enjoy sufficiently strong global distance-
based symmetry support are deemed to be symmetric point pairs.
The global symmetry support for point pair {a, b} is quantified by
the number of other point pairs which potentially share the intrin-
sic symmetry properties of {a, b}. The global symmetry support
is computed using a simple, distance-based symmetry criterion de-
fined over two point pairs within the population of good voters as
shown in Figure 2.

1.2 Overview

The input to the proposed symmetry detection and characterization
algorithm is a 3D shape that is approximated by a 2-manifold tri-
angular mesh. The local intrinsic geometry is quantified using the
wave kernel signature (WKS) [AUBRY11] whereas the global in-
trinsic geometric distance measure chosen is the biharmonic dis-
tance measure (BDM) [LIPMAN10a]. The proposed algorithm
consists of a voting procedure on the correspondence space defined
over a set of locally symmetric surface point pairs sampled from
the input 3D shape, followed by the generation of a functional map
(see Figure 2).

1.2.0.1 Correspondence Space Voting. The input to the
correspondence space voting procedure comprises of point pairs
that can be considered as candidates for symmetry. Prior to per-
forming the transformation space mapping procedure, we sample
a set of locally symmetric point pairs from the input shape based
on the similarity of their WKS’s. To estimate the symmetry support
received by a point pair, we perform a voting procedure by count-
ing the number of good voters which potentially share the same
intrinsic symmetry as the source point pair. The voting procedure
ensures that we have a set of good point pair initializations from
which we can create an initial map of the symmetry transformation
that can then be extrapolated to other surface point pairs on the 3D
shape.

1.2.0.2 Computation of the Functional Map. A func-
tional map provides an elegant representation for the maps between
surfaces, allowing for efficient inference and manipulation. In the
functional map approach, the concept of a map is generalized to
incorporate correspondences between real valued functions rather
than simply between surface points on the 3D shapes. Our choice of
the multi-scale eigenbasis of the Laplace-Beltrami operator makes
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Fig. 2. Overview of the proposed symmetry detection and characterization framework.

the functional map representation both, very compact and yet in-
formative. We show that our functional map formulation not only
results in a compact description of the underlying map of the sym-
metry transformation, but also enables meaningful characterization
of the symmetry transformation.

The primary contributions of our paper can be summarized as
follows:

(1) Robust and meaningful characterization of the symmetry trans-
formation via formulation of a symmetry space to quantita-
tively distinguish between instances of simple and complex
symmetry.

(2) Leveraging of the functional map representation to succesfully
represent the map of the underlying symmetry transformation
regardless of its complexity.

(3) Providing a solution to the symmetric flipping issue via in-
terpolation of the correspondence from the base surface point
pairs using functional maps.

(4) Enabling recovery of the symmetry groups via clustering on
the functional maps.

2. RELATED WORK

The research literature on symmetry detection has grown substan-
tially in recent years as shown in the excellent survey by Mitra et.
al. [MITRA13]. In this paper, we do not attempt to provide an ex-
haustive exposition of the state of the art in symmetry detection;
rather we focus on discussing existing works that are most closely
related to our proposed approach.

2.1 Symmetry detection in transformation space

Several recent approaches to detect approximate and partial
extrinsic symmetries have focused on algorithms that cluster

votes for symmetries in a parameterized transformation space
[IMIYA99]; [MITRA06]; [YIP00]; [LI05]]. Mitra et al. [MI-
TRA06] generate votes in a transformation space to align pairs of
similar points and then cluster them in a space spanned by the pa-
rameters of the potential symmetry transformations. Regardless of
how good the shape descriptors are, the aforementioned methods
are not effective at finding correspondences between points in com-
plex symmetry orbits that are spread across multiple distinct clus-
ters in the transformation space. Since the dimensionality of the
transformation space increases with the complexity of the symme-
try, the voting procedure in transformation space becomes increas-
ing intractable when dealing with complex symmetries.

2.2 Symmetry representation in transformation
space

There exists a body of published research literature that charac-
terizes shape representations based on the extent of symmetry dis-
played by an object with respect to multiple transformations. Kazd-
han et al. [KAZDHAN03] have proposed an extension of Zabrod-
skys symmetry distance to characteristic functions, resulting in a
symmetry descriptor that measures the symmetries of an object
with respect to all planes and rotations through its center of mass.
Podolak et al. [PODOLAK06] have extended the symmetry de-
scriptor to define a planar reflective symmetry transform (PRST)
that measures reflectional symmetries with respect to all planes
through space. Rustamov et al. [RUSTAMOV08] have extended the
PRST to consider surface point-pair correlations at multiple radii.
Although the above representations provide a measure of symmetry
for a regularly sampled set of transformations within a group, they
are practical only for transformation groups of low dimensionality
(for example, rigid body transformations would require one to store
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a six-dimensional matrix) and break down when faced with groups
of higher dimensionality.

2.3 Discovery of repeating structures

The exists a class of techniques that exploits the redun-
dancy in repeating structures to robustly detect symme-
tries [BOKELOH09]; [LI06]; [LIU07]; [PAULY08]; [SHIKHARE01].
The transformation space voting method proposed by Mitra et
al. [MITRA06] is extended in [PAULY08] by fitting parameters
of a transformation generator to optimally register the clusters in
transformation space. Berner et al. [BERNER08] and Bokeloh et
al. [BOKELOH09] have taken a similar approach using subgraph
matching of feature points and feature lines, respectively, to
establish potential correspondences between repeated structures.
This is followed by an iterative closest points (ICP) algorithm to
simultaneously grow corresponding regions and refine matches
over all detected patterns, allowing the detection of repeated
patterns even in noisy data [PAULY08], but at the cost of requiring
a-priori knowledge of the commutative group expected in the data.
Also, the non-linear local optimization procedure within the ICP
algorithm could cause it to get trapped in a local minimum if the
initialization is not good enough.

2.4 Eigen-analysis methods

Lipman et al. [LIPMAN10] have proposed an eigen-analysis tech-
nique for symmetry detection that relies on spectral clustering. The
top eigenvectors of their geometric similarity-based SCM charac-
terize the symmetry-defining orbits, where each orbit includes all
points that are symmetric with one another. However, their work
is not suited for multi-scale partial symmetry detection. First, ex-
pressing local point similarities as symmetry invariants is only ap-
propriate for global intrinsic symmetry detection. In the case of
partial symmetry detection, it is not always possible to reliably
judge if two surface points are symmetric by comparing only their
point (i.e., local) signatures, especially when one point lies on the
boundary of symmetric regions. Moreover, their single-stage clus-
tering procedure is unable to identify overlapping symmetries. Xu
et al. [XU12] have extended the eigen-analysis approach of Lipman
et al. [LIPMAN10] by incorporating the concept of global intrinsic
distance-based symmetry support accompanied by a 2-stage spec-
tral clustering procedure to distinguish between scale detection and
symmetry detection. Although they showed some interesting re-
sults, the 2-stage spectral clustering procedure made their method
extremely slow. Furthermore, the absence of transformation map
retrieval meant that further processing of the detected symmetries,
which are represented as point pairs, was extremely inefficient.

The proposed scheme is decoupled into two steps of Correspon-
dence Space Voting and Transformation Space Mapping. The Cor-
respondence Space Voting technique is inspired from the work of
Xu et al. [XU12], but in our technique, we bypassed the 2 partic-
ularly lengthy steps of spectral clustering and the all-pair geodesic
distance calculation to improve the running time quite significantly.
Moreover, our introduction of Transformation Space Mapping in
symmetry detection is quite novel in the sense that this not only
provides a concise description of the underlying symmetry trans-
formation, but according to our knowledge this is one of the first
works which has the unique ability of characterizing the symmetric
transformation.

3. THEORETICAL FRAMEWORK

In this section, we present a formal description of the problem be-
ing addressed in this paper. In particular, we define the input to
and output of the proposed algorithm. We also define the type of
intrinsic symmetries the proposed algorithm is designed to detect
and the formal characterization of these symmetries. There are two
primary aspects to the theoretical framework for the proposed algo-
rithm, i.e., correspondence space voting (CSV) and functional map
retrieval (FMR). In the case of CSV, a joint criterion, that combines
local intrinsic surface geometry and global intrinsic distance-based
symmetry, is proposed and shown to result in a provably neces-
sary condition for intrinsic symmetry. In the case of FMR, a formal
scheme for the characterization of the detected symmetries, based
on their complexity is proposed.

We have mainly restricted our study of intrinsic symmetries
to isometric involutions for two reasons; first, having a provably
necessary condition for intrinsic symmetry provides theoretical
soundness and second, the proposed symmetry criterion bounds
the search space sufficiently, ensuring that the solution is compu-
tationally tractable [XU12]. Following the initial detection of good
symmetric correspondences, we proceed to retrieve the map of the
symmetry transformation by leveraging the functional map frame-
work. Moreover, the intrinsic symmetry ensures that the retrieved
maps exhibit a diagonality characteristic. A cost matrix is designed
to exploit this characteristic such that the inner product of func-
tional map with the cost matrix results in a quantitative evaluation
of the complexity of the detected symmetry.

3.1 Input to the Proposed Algorithm

Our problem domain is a compact, connected 2-manifold, M ,
with or without a boundary. The manifold M is a 3D shape, i.e.,
M → R3. Distances on the manifold M are expressed in terms of
an intrinsic distance measure. In particular, the biharmonic distance
measure (BDM) is used on account of its ease of calculation and
greater robustness to local surface perturbation when compared to
the geodesic distance measure dM [LIPMAN10a]. In the remain-
der of the paper, we use the term intrinsic distance and biharmonic
distance interchangeably.

3.2 Output of the Proposed Algorithm

In the proposed algorithm each symmetry transformation is repre-
sented by a map. Consequently, the output of the proposed algo-
rithm consists of maps represented as matrices. The output can be
regarded as a complete description of all the overlapping intrinsic
symmetries represented in a compact and informative manner.

3.3 Defintion of Intrinsic Symmetry

Suppose we are given a compact manifold M without boundary.
Following [RAVIV07] we call M intrinsically symmetric if there
exists a homeomorphism T : M → M on the manifold that pre-
serves all geodesic distances. That is:

dM (p, q) = dM (T (p), T (q))∀p, q ∈M (1)

where dM (p, q) is the intrinsic distance between two points on the
manifold. In this case, we call the mapping T an intrinsic symme-
try.
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Fig. 3. Limitation of the proposed symmetry detection algorithm.

3.4 Symmetry Criteria

We propose two simple criteria to test whether two surface point
pairs on the manifold potentially share the same intrinsic symme-
try. Specifically, given two surface point pairs {x, x′} and {y, y′}
on manifold M , the first criterion, which is based on local intrin-
sic geometry, determines the symmetry potential of the two surface
point pairs by comparing their corresponding wave kernel signa-
tures (WKS’s) as follows:

WKS(x, t) = WKS(x′, t) and

WKS(y, t) = WKS(y′, t) ∀t ≥ 0 (2)

where t is a scale parameter. The second criterion is based on in-
trinsic distance as follows:

dM (x, y) = dM (x′, y′) and

dM (x, y′) = dM (y, x′) (3)

The above two criteria are necessarily satisfied if the surface point
pairs under consideration correspond to the same intrinsic symme-
try.

3.5 Limitations

The proposed framework fails to detect intrinsic symmetry in cases
where the second symmetry criterion (in equation (3)) is not sati-
fied. For example, Figure 3, depicts two human figures that form
what may be perceived as a translational symmetry, although they
do not possess intrinsic symmetry. The second symmetry criterion
(equation (3)) fails to hold in this situation. Generally speaking, the
proposed algorithm is not designed to detect all forms symmetry
resulting from repeated patterns, especially if the patterns are not
connected. In contrast to the approach of Xu et al. [XU12], the use
of biharmonic distance instead of geodesic distance as the intrinsic
distance measure ensures that the proposed algorithm is capable
of detecting intrinsic symmetry even in the presence of small per-
turbations (such as small bumpy regions) on the 3D surface [LIP-
MAN10a].

4. CORRESPONDENCE SPACE VOTING

The first step in the proposed symmetry detection and characteri-
zation framework is the correspondence space voting (CSV) pro-
cedure. Although a voting procedure has been previously incorpo-
rated in an earlier symmetry detection technique, it was carried out
primarily in transformation space [MITRA06]. The importance of
correspondence space for the detection of symmetry was explained
more recently by Lipman et al. [LIPMAN10]. In our case, although

Fig. 4. Sampling results on three different human shapes

the detected symmetry is finally represented in functional space, it
is critical to have good initialization to ensure the success of the fi-
nal map generation. We have designed and implemented a CSV al-
gorithm to facilitate good initial guesses. The CSV algorithm com-
prises of three stages described in the following subsections:

4.1 Point Selection

A subset of points with adequate discriminative power needs to
be selected prior to the generation of surface point pairs. A sub-
set X consisting of n sample points is chosen from the surface
of the given input 3D shape using the Farthest Point Sampling
strategy [ELDAR97]. Although originally designed to operate on
geodesic distances generated using the marching cubes algorithm,
in our case we have employed the farthest point random sampling
strategy in biharmonic distance space. The results of the sampling
procedure are depicted in Figure 4.

The biharmonic distance measure (BDM) is similar in form to
the diffusion distance measure (DDM) [LING06]. The BDM ker-
nel is based on the Green’s function of the biharmonic differential
equation. In the continuous case, the (squared) biharmonic distance
between two points x and y can be defined using the eigenvectors
(φk) and eigenvalues (λk) of the Laplace- Beltrami operator [LIP-
MAN10] as follows:

dM (x, y)2 =

∞∑
k=1

(φk(x)− φk(y))2

λ2
k

(4)

The above definition of the BDM is slightly different from that
of the DDM where the denominator in the case of the DDM is
e2tλk . However, this subtle change ensures greater control over the
characterization of the global and local properties of the underly-
ing manifold in the case of the BDM. Consequently, the BDM is
fundamentally different from the DDM with significantly different
properties.

The BDM, as expressed in equation (4), captures the rate of de-
cay of the normalized eigenvalues λk of the Laplace- Beltrami op-
erator; if the decay is too slow, it produces a logarithmic singu-
larity along the diagonal of the Green’s function [YEN07]. Alter-
natively, too fast a decay basically ignores eigenvectors associated
with higher frequencies, resulting in the BDM being global in na-
ture (i.e., the local surface details are ignored). Lipman et al. [LIP-
MAN10a], demonstrated that performing quadratic normalization
provides a good balance, ensuring that the decay is slow enough to
capture the local surface properties around the source point and yet
rapid enough to encapsulate global shape information.

In particular, Lipman et al. [LIPMAN10a] have theoretically
proved two important properties of the BDM, i.e., that it is (i) a
metric, and (ii) smooth everywhere except at the source point where
it is continuous. The key observation is that for 3D surfaces, the
eigenvalues λk, k = 1, 2, . . ., of the Laplacian are an increasing
function of k resulting in the continuity of the BDM everywhere
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and also smoothness of the BDM everywhere except at the source
point, where it has only a derivative discontinuity.

In our implementation of the farthest point random sampling
strategy, a single point is selected randomly at first and the remain-
ing points are chosen iteratively from remainder set by selecting
the farthest point in the biharmonic distance space at each iteration.
This strategy generates a set of points located mostly in the vicin-
ity of the shape extrema which can then be used in the subsequent
surface point pair generation procedure.

4.2 Surface Point Pair Generation

From the chosen subset X consisting of n sample points, the sur-
face point pairs are generated by exploiting the similarity of their
local intrinsic geometric structure. The similarity of local intrinsic
geometric structure of two surface points is determined by compar-
ing their corresponding wave kernel signatures (WKS’s). To deter-
mine the WKS of a surface point x, one evaluates the probability of
a quantum particle with a certain energy distribution to be located
at point x. The behavior of the quantum particle on the surface is
governed by the Schrodinger equation. Assuming that the quantum
particle has an initial energy distributed around some nominal en-
ergy with a probability density function f(e), the solution of the
Schrodinger equation can then be expressed in the spectral domain
as:

ψ(x, t) =
∑
k>=1

eiektf(ek)φk(x) (5)

Aubry et al. [AUBRY11] considered a family of log-normal en-
ergy distributions centered around some mean log energy log ewith
variance σ2. This particular choice of distributions is motivated
by a perturbation analysis of the Laplacian spectrum [AUBRY11].
Having fixed the family of energy distributions, each point x
on the surface is associated with a WKS of the form: p(x) =
(pe1(x), . . . , pen(x))

T where pei(x) is the probability of measur-
ing a quantum particle with the initial energy distribution ei(x) at
point x. Aubry et al. use logarithmic sampling to generate the val-
ues e1(x), . . . , en(x).

The WKS can be shown to exhibit a band-pass characteristic.
This reduces the influence of low frequencies and allows better sep-
aration of frequency bands across the descriptor dimensions. As the
result, the wave kernel descriptor exhibits superior feature localiza-
tion compared to the Heat Kernel Signature (HKS) [LITMAN13].
Although the WKS is invariant under isometric deformation, in
most practical cases where the underlying surface is represented
by a discrete triangular mesh, it is not possible to strictly satisfy the
invariance criterion in equation (2). Consequently, we have consid-
ered the 2-norm (simply squared Eucledian distance in the WKS
space) of the WKS and chosen surface point pairs from the sub-
set X which satisfy the WKS invariance criterion in equation (2)
to within a prespecified threshold TWKS instead of requiring strict
equality. The surface point pairs that satisfy the WKS invariance
criterion in equation (2) are considered for the next step of global
distance-based voting. This relaxation of the WKS invariance crite-
rion ensures that even the overlapping intrinsic symmetries are con-
sidered for voting. We have coined the term good voters to denote
the subset of surface point pairs that satisfy the WKS invariance
criterion (to within the prespecified threshold).

4.3 Global Distance-based Voting

The global distance-based voting step in the proposed symmetry
detection technique is inspired by the work of Xu et. al. [XU12]. A
subset of symmetric point pairs is extracted from the set of good

voters using the global distance-based voting procedure prior to
functional map generation. The goal of the voting procedure is to
accumulate symmetry support for the good voters and extract the
symmetric point pairs based on the level of symmetry support re-
ceived.

A point pair in the set of good voters is deemed to be symmet-
ric if it has a sufficiently large global symmetry support, which
in [XU12] is measured by the number of point pairs that satisfy the
intrinsic distance criterion in equation (3). Xu et al. [XU12] have
presented a voting technique based on two point pairs followed by
spectral clustering on the symmetric point pairs which enables one
to distinguish whether a point pair supports one particular symme-
try or more than one type of symmetry. However, since we are are
not interested, at this stage, in making the above distinction be-
tween the point pairs, we have chosen to adopt a straightforward
approach of choosing a point pair and letting the set of good voters
vote and decide whether or not the particular point pair satisfies the
intrinsic distance criterion in equation (3). Another modification to
the previous voting procedure of Xu et al. [XU12] is our use of the
biharmonic distance as the intrinsic distance instead of the geodesic
distance. This modification provides two advantages over the pre-
vious voting procedure, First, since the computation of geodesic
distances between all surface point pairs is more intensive than the
computation of biharmonic distances, our procedure is much faster.
Second, biharmonic distances are less sensitive to noise and surface
perturbations compared to geodesic distances, making our proce-
dure more robust.

5. SYMMETRY EXTRACTION USING
FUNCTIONAL MAPS

Before describing our functional map approach to symmetry ex-
traction, we first provide an overview of the functional map frame-
work proposed by Ovsjanikov et al. [OVSJANIKOV12]. A func-
tional map is a novel approach for inference and manipulation
of maps between shapes that tries to resolve the issues of corre-
spondences in a fundamentally different manner. Rather than plot-
ting the corresponding points on the shapes, the mappings between
functions defined on the shapes are considered. This notion of cor-
respondence generalizes the standard point-to-point map since ev-
ery pointwise correspondence induces a mapping between function
spaces, while the opposite, in general, is not true.

The new framework described above provides an elegant way
to avoid direct representation of correspondences as mappings
between shapes using a functional representation. Ovsjanikov et
al. [OVSJANIKOV12] have noted that when two shapes X and
Y are related by a bijective correspondence t : X → Y , then
for any real function f : X → R, one can construct a corre-
sponding function g : Y → R as g : f ◦ t−1. In other words,
the correspondence t uniquely defines a mapping between the two
function spaces F (X,R) → F (Y,R) , where F (X,R) denotes
the space of real functions on X . Equipping X and Y with har-
monic bases, {φi}i≥1 and {ψj}j≥1, respectively, one can represent
a function f : X → R using the set of (generalized) Fourier co-
efficients {ai}i≥1 as f =

∑
i≥1 aiφi. Translating this represen-

tation into the other harmonic basis {ψj}j≥1, one obtains a sim-
ple representation of the correspondence between the shapes given
by T (f) =

∑
i,j≥1 aicijψj where cij are Fourier coefficients of

the basis functions of X expressed in the basis of Y , defined as
T (φi) =

∑
i,j≥1 cijψj . The correspondence t between the shapes

can thus be approximated using k basis functions and encoded us-
ing a k× k matrix C = (cij) of these Fourier coefficients, referred
to as the functional matrix. In this representation, the computation

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Detection and Characterization of Intrinsic Symmetry • 7

Fig. 5. The band-pass characteristic of the WKS at different scales for the same human figure.

of the shape correspondence t : X → Y is translated into a sim-
pler task of determining the functional matrix C from a set of cor-
respondence constraints. The matrix C has a diagonal structure if
the harmonic bases {φi}i≥1 and {ψj}j≥1 are compatible, which is
a crucial property for the efficient computation of the correspon-
dence.

In our symmetry extraction algorithm, instead of comparing two
different shapes, we propose to compare two symmetric regions
within the same shape. In particular, based on the previously de-
tected set of symmetric point pairs, we leverage the functional map
representation in the following manner: for each pair of symmetric
points, we deem one point as the source and the other as the des-
tination and choose a local region around each point. The ordering
of the source and destination points within the pair is the same as
originally chosen during the voting procedure. The corresponding
eigenbases for the points in the source and destination regions are
computed. These eigenbases are ordered based on their similarity
with each other and the final functional map for that particular sym-
metry is extracted. The functional map representation ensures that
(a) the problem of symmetry extraction is tractable and, (b) the re-
sulting symmetry can be represented, not by a large matrix of point
correspondences, but rather as a more compact map which can be
further manipulated for other applications as well.

6. SYMMETRY CHARACTERIZATION USING
FUNCTIONAL MAPS

In general, the characterization of a specific transformation based
on its functional map is a challenging task. However in our case, the
proposed CSV framework ensures that the point pairs used in the
generation of the functional map are intrinsically symmetric to a
reasonable extent. This property of intrinsic symmetry ensures that
the resulting functional map is diagonal or close to diagonal [OVS-
JANIKOV12]. However, in reality, there are several cases where the
actual transformation deviates substantially from ε-isometric defor-
mation resulting in a densely populated functional matrix C. The
diagonality property of the C matrix was first exploited succesfully
in an intrinsic correspondence framework using a sparse modeling
technique [PORKASS13]. In their paper, the authors introduced a
weight matrix W of same size as C where lower weights are as-
signed to elements close to the diagonal, and larger weights are
assigned to the farther off-diagonal elements by using an inverted
Gaussian model where the 0 weights are assigned at diagonal and
the weights at off-diagonals are larger. The element-wise multipli-
cation ofW with C is a determining factor in the assessment of the
diagonality of C since the matrix inner product results in higher
values for the off-diagonal elements and lower values for the diag-
onal elements thereby resulting in a measure of the diagonality of
the matrix C.

Fig. 6. Symmetry characterization based on functional maps, in particu-
lar, the complexity of the symmetry transformation is characterized by the
wieght matrix W and represented in the increasing order of the value of
inner product of W and C.

In the context of symmetry characterization, problem, we assume
that the off-diagonality of C corresponds to the complexity of the
symmetry transformation and therefore is penalized during multi-
plication with elements of the weight matrix W , i.e., more non-
zero off-diagonal elements in C would represent a more complex
symmetry transformation. Thus, we can, not only determine the
complexity of the symmetry transformation but can also succes-
fully formulate a 1D semi-metric symmetry space, wherein each
symmetry transformation is represented as a point in the symmetry
space with a value given by the inner product beween the matrix C
and weight matrixW . The Euclidian distance between the points in
the 1D symmetry space represents the complexity distance between
the transformations. In the symmetry space, any perfectly isomet-
ric transformation will result a point at origin of the line. On the
other hand, more complex symmteric transformations would result
in points farther away signifying more complex transformations.
This space is called a semi-metric space because of it follows two
main properties of the distance definition but not the third one. For
two points X and Y in the symmetry space, the distance d(X,Y )
from X to Y always follows

(1) Non-negativity: d(X,Y ) ≥ 0

(2) Symmetry: d(X,Y ) = d(Y,X)

but not

(3) Triangle Inequality.

It is also possible to cluster the ponts in the 1D symmetry space
to identify intrinsic symmetries which are potentially similar in na-
ture as shown in the Experimental Results section to follow.
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7. EXPERIMENTAL RESULTS

In this section, we present and discuss the results obtained by the
proposed intrinsic symmetry detection algorithm on 3D shapes. We
also provide comparisons of our results with those obtained from
the most closely related approaches [XU12], [LIPMAN10]. We
also shown some applications where the detected symmetries can
be further analyzed for symmetry characterization and clustering,
potentially revealing greater semantic information about the under-
lying 3D shape. Most of the 3D shape models used in our experi-
ments are from the Non-rigid World dataset [BRONSTEIN07] un-
less mentioned otherwise.

7.1 Preprocessing

Several discrete schemes have been proposed in recent years to
approximate the Laplace-Beltrami operator on triangular meshes.
Among these, the one mostly used most widely for computing the
discrete Laplace operator is the cotangent (COT) scheme, origi-
nally proposed by Pinkall and Polthier [PINKALL93]. Recently,
Belkin et al [BELKIN08] proposed a discrete scheme based on
the heat equation, which has been proven to possess the point-
wise convergence property for arbitrary meshes. Although it is
well known that no discrete Laplace operator can share all of the
properties of its continuous counterpart, in our experiments the
aforementioned discrete schemes produce eigenfunctions that ap-
proximately preserve the convergence property of the continuous
Laplace operator for a reasonably well sampled triangular mesh. In
all of the experiments described below, we have used the cotangent
scheme [PINKALL93] for the computation of the discrete Laplace-
Beltrami operator.

7.2 Symmetry Detection

The results of the proposed symmetry detection algorithm are de-
picted in Figures 1, 7, 8 and 12. Several important properties of the
proposed algorithm are highlighted in these results.

7.2.1 General Symmetry Detection. The ability of the pro-
posed algorithm to identify multiple intrinsic symmetries is evident
from the results shown in Figures 7 and 12. The extracted symme-
tries are seen to cover the global symmetry of the underlying 3D
shape which has undergone approximate isometric deformations.
Additionally, the proposed algorithm is also observed to be capable
of detecting symmetry transformations that cover individual com-
ponents of a 3D object that possess various forms of self-symmetry.

7.2.2 Overlapping Symmetry Detection. One particularly im-
portant aspect of the proposed algorithm is its ability to detect in-
stances of overlapping symmetry. An instance of overlapping sym-
metry is deemed to occur when a specific region on the surface of
the 3D shape is simultaneously subjected to more than one sym-
metry transformation and, as a result, is symmetric to more than
one region on the 3D shape surface. For example, Figure 7 shows
that the overlapping symmetry between all paws of the Cat shape
model is succesfully detected by the proposed technique. Six dif-
ferent combinations of symmetry transformation between the four
paws are depicted in Figure 7.

7.2.3 Noise. Although the CSV procedure is statistical in na-
ture, the proposed biharmonic distance-based voting scheme en-
sures its robustness to noise. In particular, Figure 8 demonstrates
the robustness of the proposed symmetry detection technique for
different levels of synthetic Gaussian noise added to the Human
shape model.

Fig. 7. Overlapping symmetry detection on the Cat shape model.

Fig. 8. Robustness of symmetry detection for three different levels of syn-
thetic white Gaussian noise added to the Human shape model.
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Table I. Timing results for the various steps in the
proposed algorithm.

Points Biharmonic FMap Extraction Total
3400 32 2 5 39

10000 41 3 7 51
50000 237 4 15 256

Fig. 9. In comparison of (c) the symmetry-factored embedding (SFE)
technique of Lipman et al. [LIPMAN10], which primarily detects instances
of global intrinsic non-overlapping symmetry, the proposed CSV procedure
ensures the detection of instances of overlapping intrinsic symmetry (a,b)
as well.

7.3 Performance Statistics

All of the experiments reported in this paper were performed on
an Intel Core

TM
3.4 GHz machine with 8 GB RAM. For all the

example models, the number of sample points were in the range
[20, 100]. Table I reports the timing results for the various steps
in the proposed symmetry detection algorithm. In particular, un-
like [XU12], wherein the most time consuming step of all-pairs
geodesic distance computation is not reported, we also report the
timing results for the equivalent step in our formulation i.e., the
all-pairs biharmonic distance computation. The most time consum-
ing step in the proposed algorithm, i.e., the all-pairs biharmonic
distance computation, accounts for around 80% of the execution
time of the proposed algorithm. More importantly, bypassing the
two-step spectral clustering procedure described in [XU12] reduces
significantly the computation time of the proposed algorithm.

7.4 Comparisons

We have compared the proposed symmetry detection algorithm
primarily with methods that could be deemed sufficiently simi-
lar [XU12], [LIPMAN10]. The symmetry detection technique of
Xu et al. [XU12] can detect overlapping partial intrinsic symme-
tries whereas that of Lipman et al. [LIPMAN10] is designed to
deal with partial extrinsic symmetries. However, if the symmetric
sub-shapes do not undergo significant pose variations, the global
alignment component of [LIPMAN10] may allow it to detect cer-
tain partial intrinsic symmetries as well. However, whereas both
methods [XU12], [LIPMAN10] are capable of detecting instances
of partial intrinsic symmetry, neither is able to characterize the un-
derlying symmetry.

In contrast, the proposed algorithm, not only detects overlapping
intrinsic symmetries, but it also has the ability to characterize and
cluster the detected symmetries in symmetry space. Since their en-
tire formulation is based solely on global intrinsic distance-based
voting, the technique of Xu et al. [XU12] suffers from the short-

coming of not being able to reliably detect symmetry flips. The
symmetry flip phenomenon is deemed to occur when for the same
symmetric transform, the point correspondences interchange their
relative positions due to ill-posed symmetry detection criteria. The
proposed algorithm, on the other hand, interpolates the functional
map of symmetry transformations from the chosen directed point
pair, to the remaining point pairs, i.e., once the source and desti-
nation within a point pair are identified, the remaining correspon-
dences are obtained via interpolation using the functional map. The
functional map ensures that the interpolated point pairs observe the
same direction of symmetry as the initial directed pair, i.e., the
functional map preserves the relative positions of points within a
point pair that are subject to the same symmetry transformation.
The functional map thus provides a natural solution to the symme-
try flip problem as evidenced in Figure 10. The symmetry-factored
embedding (SFE) technique of Lipman et al. [LIPMAN10], though
designed for extrinsic symmetry detection, in simpler cases, is able
to detect intrinsic symmetries as well. However, it fails completely
in cases of overlapping symmetries whereas the proposed CSV pro-
cedure ensures the detection of instances of overlapping intrinsic
symmetry as shown in Figure 9.

7.5 Quantitative Evaluation

In this section, we present quantitative evaluation of the results
obtained by the proposed approach. In order to evaluate the pro-
posed algorithm, we used the SHREC 2010 feature detection and
description benchmark [BRONSTEIN10]. This dataset comprises
of three shapes (null shapes) and a set of shapes obtained by ap-
plying a set of transformations on the null shapes. Shapes have ap-
proximately 10,000 to 50,000 vertices and their surfaces are rep-
resented by triangular meshes. We have specifically considered
shapes which have undergone changes characterized by isometry,
topology, micro-holes, scale and noise. For each transformation, in
the initial phase, a total 50 sample points are generated using the
farthest random sampling strategy as shown in Figure 11. Almost
all transformations maintain a high repeatability (greater than 80%)
at overlap values ≤ 0.75 except for changes in topology.

7.6 Symmetry Characterization

The diagonality property of the functional map could be used to
characterize the underlying symmetry transformation and classify
it as a simple transformation or as one that is more complex in
nature. Our assumption is that, greater the complexity of symme-
try transformation, greater the deviation of the shape deformation
from intrinsic isometry, resulting in a deformation characterized by
a functional matrix C with higher off-diagonal element values. The
resulting characteriztion of the isometric deformation is depicted in
Figure 6.

7.7 Symmetry Group Retrieval

As discussed in [XU12], symmetry has a group structure. Conse-
quently, the retrieval of symmetry transformation can be cast as
a clustering problem from an algorithmic perspective. We exploit
the functional maps generated previously to cluster the detected in-
stances of symmetry in transformation space and retrieve the sym-
metry groups. Due to the symmetric flip problem inherent in the
CSV procedure, we adjusted the relative positions of source and
destination points within each point pair by finding the minimum
distance between the source and destination points in the bihar-
monic distance space. This ensures that the functional maps gen-
erated from potentially similar transformations will have similar
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Fig. 10. In contrast to the technique of Xu et al. [XU12] (a), which relies
solely on global intrinsic distance and consequently, fails to detect sym-
metric flips (in red), the proposed functional map-based interpolation of the
symmetric correspondence (b) ensures robust detection of symmetric flips.

structure since the symmetry flip problem between the maps is re-
solved. In particular, we have used a simple k-means clustering
algorithm to cluster the functional maps based on their symmetry
groups as depicted in Figure 12.

8. CONCLUSION AND FUTURE DIRECTIONS

We have presented an algorithm for detection and characterization
of intrinsic symmetry in 3D shapes. While the results obtained are
encouraging, we regard our work as an initial attempt towards com-
plete understanding of and a verifiable solution to the general prob-
lem of symmetry detection and characterization. We have identified

Fig. 11. Overlap vs. Repeatability plot for the proposed symmetry detec-
tion technique on the SHREC 2010 benchmark dataset.

some limitations of our approach and we hope to address these in
our future work.

To the best of our knowledge, this is one of the first attempts to
formalize the symmetry analysis problem not only as one of sym-
metry detection, but as one that can be extended to include symme-
try characterization and symmetry clustering in the transformation
space. In particular, the introduction of the functional map formal-
ism in symmetry detection enables us to come up with a novel rep-
resentation of the symmetry transformation as a map. In future, we
aim to formulate operations, such as addition and subtraction, on
these generated maps that would potentially provide a deeper and
more comprehensive understanding of intrinsic symmetry in gen-
eral.

The incorporation of Transformation Space Mapping in Symme-
try characterization is a completely new idea and the full potential
of it can only be realized after more extensive experimentations. In
particular, we plan to study the possibility of map based exploration
of similar symmetric transformations across shapes in near future.
Another important direction that can be considered is the possi-
bility of incorporating this technique in Computer Aided Geomet-
ric Design for urban architecture. In urban architecture, symmetric
repetition of same pattern is a common thing and during the design
phase, if the basic structure is stored only once and the symmetric
repetitions are saved as Functional Maps, it can possibly solve both
the space complexity problem and the design efficiency problem.
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